Acta Crystallographica Section E Structure Reports Online

ISSN 1600-5368

Zai-Gang Luo,^a De-Qing Shi^a* and Xiang-Gao Meng^b

^aKey Laboratory of Pesticide & Chemical Biology of Ministry of Education, College of Chemistry, Central China Normal University, Wuhan 430079, Hubei, People's Republic of China, and ^bCollege of Chemistry, Central China Normal University, Wuhan 430079, Hubei, People's Republic of China

Correspondence e-mail: chshidq@yahoo.com.cn

Key indicators

Single-crystal X-ray study T = 292 KMean σ (C–C) = 0.004 Å R factor = 0.050 wR factor = 0.140 Data-to-parameter ratio = 13.6

For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.

© 2005 International Union of Crystallography All rights reserved

Ethyl 5-amino-1-(4-chlorophenyl-5,5-dimethyl-2-oxo-1,3,2-dioxaphosphinan-2-yl)-3-(6-chloro-3-pyridylmethylamino)-1*H*-pyrazole-4-carboxylate

In the title compound, $C_{23}H_{26}Cl_2N_5O_5P$, the P atom adopts a distorted tetrahedral coordination. The terminal ethyl carboxylate group is almost coplanar with the plane of the pyrazole ring. Intramolecular $N-H\cdots O$ hydrogen bonds influence the overall conformation of the molecule. $C-H\cdots \pi$ Interactions contribute to the crystal packing.

Received 31 August 2005 Accepted 14 September 2005 Online 21 September 2005

Comment

Neonicotinoide insecticides as nicotinic acetylcholine receptor inhibitors have attracted increasing attention because of their safety, low toxicity, wide range of activities and high potency (Shiokawa *et al.*, 1986). It has been found that most biologically active nicotinic compounds contain the 3-aminomethylpyridine group (Yamamoto *et al.*, 1994). Pyrazole and phosphorus heterocyclic compounds appear to be very important due to their wide range of biological activities (Tomcufcik *et al.*, 1985; Hirashima *et al.*, 1986).

We report here the crystal structure of the title compound, (I) (Fig. 1), which was synthesized by attachement of a 1,3,2dioxaphosphinane and a 3-aminomethylpyridine group to pyrazole. The distorted tetrahedral configuration of the P atom can be attributed to the presence of the dioxaphosphinane ring whose sterical and electronic properties influence the coordination. The values of the double P1=O3 and single P1-N1 bonds and the angles O-P-O' and O-P-N illustrate the irregularities (Table 1). The dioxaphosphinane ring adopts a distorted chair conformation, with the parameters Q = 0.5186 (28) Å, $\theta = 151.45$ (26)° and $\varphi = 11.2$ (6)° (Cremer & Pople, 1975). Atoms C11, O1, C7 and O2 of the dioxaphosphinane ring are not coplanar; the average deviation is 0.0245 (3) Å. The P-O single and double bonds are shorter (Table 1) than the analogous chemical bonds observed previously [1.586 (2), 1.572 (2) and 1.468 (2) Å; Liu et al.,

Figure 1

A view of the molecule of (I), showing the atom-numbering scheme and 50% probability displacement ellipsoids. H atoms have been omitted for clarity.

Figure 2

Part of the crystal packing of (I), showing a chain running along b formed by $C-H\cdots O$ interactions (dashed lines). The suffix a indicates the symmetry position x, y + 1, z.

2005]; on the other hand, the P1-N1 bond [1.677 (2) Å] is longer than the literature value [1.605 (3) Å; Liu *et al.*, 2005]. The terminal ethyl carboxylate group is almost coplanar with the plane of the pyrazole ring (Table 1). The C16-C17 bond distance [1.481 (4) Å] can be attributed to a disorder of the terminal ethyl group.

Intramolecular N-H···O hydrogen bonds form sixmembered rings (Table 2) and contribute to the stability of the overall conformation. The intermolecular C20-H···O3 interaction joins molecules into a chain along the b axis (Table 2 and Fig. 2). Methyl atom C17 and methylene atom C18 are involved in C-H··· π interactions: C17···Cg1 = 3.669 (3) Å, H17 $A \cdots Cg1 = 2.81$ Å and C17-H17 $A \cdots Cg1 =$ 148.97°; C18···Cg2 = 3.521 (3) Å, H18A···Cg2 = 2.63 Å and $C18-H18A\cdots Cg2 = 153.61^{\circ}$ [Cg1 is the centroid of the pyrazole ring of the molecule at (1 - x, 1 - y, -z) and Cg2 is the centroid of the pyrazole ring of the symmetry-related molecule at (-x, 2 - y, -z)]. The interaction of methyl and methylene groups with the aromatic π systems, described by Desiraju (2002), contributes to the crystal packing of (I).

Experimental

Α solution of 5-amino-3-(6-chloro-3-pyridylmethylamino)-4-(ethoxycarbonyl)pyrazole (4 mmol) in anhydrous CH₃CN (20 ml) and NaOH powder (5 mmol) was added to a three-necked flask. After vigorously stirring for 5 min, a solution of 2-chloro-4-chlorophenyl-5,5-dimethyl-1,3,2-dioxaphosphinane 2-oxide (4.5 mmol) was added dropwise while cooling in an ice-bath. After the addition was complete, the mixture was stirred at room temperature until the reaction was complete (monitored by thin-layer chromatography). The work-up involved stripping of the solvent followed by addition of water and extraction of the product mixture into chloroform; after phase separation, drying over Na₂SO₄, filtration and evaporation, the crude product was purified by flash column chromatography on silica gel using petroleum ether/ethyl acetate (2:1 v/v) as eluent, giving a white solid (yield: 35%, m.p. 453 K). A colourless crystal grown from absolute ethanol was selected for X-ray structure analysis.

Crystal data

$C_{23}H_{26}Cl_2N_5O_5P$	<i>Z</i> = 2
$M_r = 554.36$	$D_x = 1.415 \text{ Mg m}^{-3}$
Triclinic, P1	Mo $K\alpha$ radiation
$a = 8.1968 (11) \text{ Å}_{2}$	Cell parameters from 2290
b = 10.2180 (14) Å	reflections
c = 16.581 (2) Å	$\theta = 2.7 - 27.3^{\circ}$
$\alpha = 86.447 \ (2)^{\circ}$	$\mu = 0.36 \text{ mm}^{-1}$
$\beta = 85.668 \ (3)^{\circ}$	T = 292 (2) K
$\gamma = 70.083 \ (2)^{\circ}$	Prism, colourless
V = 1301.0 (3) Å ³	$0.40 \times 0.30 \times 0.20 \text{ mm}$

Data collection

Bruker SMART CCD area-detector	4540 independent reflections
diffractometer	3469 reflections with $I > 2\sigma(I)$
φ and ω scans	$R_{\rm int} = 0.058$
Absorption correction: multi-scan	$\theta_{\rm max} = 25.0^{\circ}$
(SADABS; Bruker, 2000)	$h = -9 \rightarrow 9$
$T_{\min} = 0.871, \ T_{\max} = 0.932$	$k = -12 \rightarrow 11$
6926 measured reflections	$l = -18 \rightarrow 19$

Refinement

Refinement on F^2 $R[F^2 > 2\sigma(F^2)] = 0.050$ wR(F²) = 0.140 S = 1.054540 reflections 333 parameters H-atom parameters constrained

 $t_{int} = 0.058$ $max = 25.0^{\circ}$ $= -9 \rightarrow 9$ $= -12 \rightarrow 11$ $= -18 \rightarrow 19$

 $w = 1/[\sigma^2(F_0^2) + (0.0711P)^2]$ where $P = (F_0^2 + 2F_c^2)/3$ $(\Delta/\sigma)_{\rm max} = 0.001$ $\Delta \rho_{\rm max} = 0.44 \text{ e } \text{\AA}^{-3}$ $\Delta \rho_{\rm min} = -0.45 \text{ e } \text{\AA}^{-3}$ Extinction correction: SHELXL97 Extinction coefficient: 0.044 (3)

 Table 1

 Selected geometric parameters (Å, °).

C16-C17	1.481 (4)	O2-P1	1.5584 (17)
N1-P1	1.677 (2)	O3-P1	1.4529 (18)
O1-P1	1.5516 (19)		
O3-P1-O1	114.92 (10)	O3-P1-N1	108.80 (10)
O3-P1-O2	113.32 (10)	O1-P1-N1	105.96 (10)
O1-P1-O2	106.83 (9)	O2-P1-N1	106.44 (10)
C12-C13-C15-O4	176.3 (3)	C17-C16-O5-C15	179.0 (2)
C14-C13-C15-O5	-174.9 (2)		

Table 2

Hydrogen-bond geometry (Å, °).

$D - H \cdots A$	D-H	$H \cdot \cdot \cdot A$	$D \cdots A$	$D - \mathbf{H} \cdot \cdot \cdot A$
C23-H23···N4	0.93	2.55	2.904 (4)	103
$C20-H20\cdots O3^i$	0.93	2.58	3.253 (3)	129
N3-H3A···O3	0.86	2.17	2.839 (3)	134
$N3-H3B\cdots O5$	0.86	2.29	2.832 (3)	121
$N3-H3B\cdots O3^{ii}$	0.86	2.63	3.108 (3)	116
$N4-H4\cdots O4$	0.80(1)	2.34 (3)	2.938 (3)	132 (3)

Symmetry codes: (i) x, y + 1, z; (ii) -x, -y + 1, -z.

H atoms were treated as riding, with C–H distances in the range 0.93–0.98 Å and N–H distances of 0.86 Å, and $U_{\rm iso}$ (H) = 1.2 or $1.5U_{\rm eq}$ (parent atom).

Data collection: *SMART* (Bruker, 2000); cell refinement: *SAINT* (Bruker, 2000);; data reduction: *SAINT*; program(s) used to solve structure: *SHELXS97* (Sheldrick, 1997); program(s) used to refine structure: *SHELXL97* (Sheldrick, 1997); molecular graphics: *SHELXTL* (Bruker, 1997); software used to prepare material for publication: *SHELXTL*.

The authors are grateful to the Natural Science Foundation of China (No. 20302002) for financial support.

References

- Bruker (1997). SHELXTL. Version 5.10. Bruker AXS Inc., Madison, Wisconsin, USA.
- Bruker (2000). SMART, SAINT and SADABS (Version 6.10). Bruker AXS Inc., Madison, Wisconsin, USA.
- Cremer, D. & Pople, J. A. (1975). J. Am. Chem. Soc. 97, 1354-1358.
- Desiraju, G. R. (2002). Acc. Chem. Res. 35, 565-573.
- Hirashima, A., Ishaaya, I., Ueno, R., Ichiyama, Y., Wu, S. Y. & Eto, M. (1986). Agric. Biol. Chem. 50, 1831–1835.
- Liu, Y., Wei, J., Shi, D. Q. & Wang, C. G. (2005). Chin. J. Struct. Chem. 24, 196–200.
- Sheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany.
- Shiokawa, K., Tsubo, S. & Moriya, K. (1986). EP Patent 192,060.
- Tomcufcik, A. S., Meyer, M. E. & Tseng, S. S. (1985). US Patent 4 562 189.
- Yamamoto, I., Yabita, G., Tomizawa, M. & Hissasomi, A. (1994). J. Pesticide Sci. 19, 335–339.